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1. Case Study Chemicals 

We compiled a database of approximately 15,800 organic chemicals including 
substances with unique CAS Registration Numbers and any reported production from 
five national and international production volume lists (see Section 2.3 Emission 
estimates). This initial list includes neutral organics, organic acids and bases and organic 
salts. A necessary simplification was to simulate exposures based on the properties of the 
neutral forms of the chemicals in the database. Simplified Molecular Input Line Entry 
System (SMILES) notations (Weininger 1988) for organic salts were modified by 
removing the salt moiety, thus providing structural information (i.e. SMILES) for the 
neutral form of the molecule. Following this approach, chemical substances on the list 
can have different CAS numbers but the same “stripped” SMILES notation and thus 
modelled properties. A distinction is made between the number of chemical substances 
on the list and the number of unique chemical structures used in the case study exposure 
simulations (n=12,619). Production volumes are added for chemicals with the same 
“stripped” SMILES notation. 

2. Model Parameterization 

2.1 Partitioning properties 

This section describes the methods for selecting partitioning property data and 
screening-level uncertainty estimates (confidence factors; Cf). We used the free and 
publicly available EPI Suite Ver. 4.1 (U.S. EPA 2011) experimental database and 
QSA(P)R models and selected measured values preferentially over modelled estimates. 
There are recognized uncertainties measuring and predicting chemical properties. EPI 
Suite guidance states that there is no universally accepted definition for model domain 
and suggests users consider the range of molecular weight in the training sets and other 
factors. There are limits to current measurement techniques for chemical properties (e.g. 
(OECD 2002) and there are technical challenges associated with obtaining accurate 
measurements near the analytical limits. Therefore, in general terms we assumed that 
“extreme” or “outlier” property measurements near, or beyond, the analytical limits are 
more uncertain than other measurements. While it is plausible that QSA(P)R models can 
make predictions outside of the measured property range used to develop and test the 
models, we considered such predictions to be “out of the model domain” and thus “highly 
uncertain” for this case study. We considered the extent to which chemical properties 
have been measured to select lower and upper bound property values to address “highly 
uncertain” physical-chemical property estimates (e.g. (Thomas 1990)). For example, as 
outlined below, there are relatively more octanol-water partition coefficient (KOW) 
measurements than Henry’s law constant (H) measurements, thus the assignment of 
uncertainty to KOW is generally lower than the assignment of uncertainty to H. We 
identified predicted property values that were beyond the selected lower and upper bound 
values. We counted the occurrence of these “outlier” values and replaced them with 
selected lower (“minima”) and upper (“maxima”) bound property values recognizing that 
the uncertainty in these predictions may be substantial and not adequately characterized 
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by the current approach. We used the EPI Suite QSA(P)R training and testing statistics 
to guide the judgement and selection of Cfs. 

Octanol-water partition coefficient. The EPI Suite Ver. 4.1 database includes 
1,911 KOW (unitless) measurements for the 12,619 unique SMILES (i.e.15%). The 0.5 
and 99.5 percentiles for the measured KOW values in this dataset are 10-3.7 and 108.6. We 
selected lower and upper bound measurement limits for KOW of 10-4 and 109 as the 
“domain” for KOW for this case study. We used the standard deviation of the model 
predictions against the model training dataset to provide some general guidance for 
overall measurement error and uncertainty. The log 10 standard deviation of the 
KOWWIN model against the measured training set is 0.217. Following Slob (Slob 1994) 
and Equation 4 in the main text, this log 10 standard deviation corresponds to a Cf of 
about 3; therefore, substances with measured KOW values within the defined domain were 
assigned a screening-level Cf of 3. Measured KOWs that are outside of the selected 
domain were considered measurement outliers (n=14) and were replaced with the lower 
and upper bound domain values, respectively, and assigned Cfs of 10. 

Validation of the EPI Suite KOWWIN model (n=10,946 substances) with an 
external test set shows that 95.6% of the predicted values are within 1 log unit of the 
measured values (U.S. EPA 2011). The log 10 standard deviation from the test set is 
0.479, corresponding to a Cf of about 9 (i.e. using Equation 4). EPI Suite predicted 
KOW values within the range for 10-4 to 109 (i.e. “considered within the model domain”) 
were therefore assigned a screening-level Cf of 10. We considered predicted KOW values 
< 10-4 and > 109 highly uncertain (i.e. “outside the model domain”) and we replaced these 
values with the lower and upper bound values, respectively. Predicted KOW values outside 
of the defined domain were assigned screening-level Cfs of 30 (i.e. n=1,253 or about 10% 
of the chemicals in the dataset).  

Henry’s law constant. The EPI Suite Ver. 4.1 database includes 1,255 Henry’s 
law constant (H; Pa.m3/mol) measurements (at 18-25 C) for the 12,619 unique SMILES 
(i.e.10%). Many of the values reported in the measured database are calculated from 
measured water solubility (SW; mol/m3) and vapor pressure (P; Pa) data as H = P/SW. The 
0.5 and 99.5 percentiles for the measured H values in this dataset are 4.8×10-9 and 
1.1×106 Pa.m3/mol. When converted to dimensionless air-water partition coefficients 
(KAW) by division by the gas constant R (8.314 Pa.m3/(mol.K)) and temperature T (298 
K), these percentiles correspond to KAW values of approximately 10-12 and 103. 
Therefore, we selected lower and upper bound limits for KAW of 10-12 and 103 as the 
“domain” for this case study. The log 10 standard deviations of the HENRYWIN models 
(i.e. both the “bond method” and the “group method”) from their corresponding measured 
training sets are both 0.40 corresponding with Cfs of about 6 (i.e. using Equation 4 in the 
main text). Therefore, we assumed a Cf of 6 to characterize the uncertainty in measured 
H values (n=1,255). We replaced H measurements outside of the defined domain (n=17) 
with the selected lower and upper bound limits accordingly and assigned Cfs of 10. 

We calculated H from measured P (n=455) and the average of the two water 
solubility QSA(P)R predictions in EPI Suite (i.e. WSKOWWIN and WATERNT) and 
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from measured SW  (n=702) using estimated P. We considered these 1,157 “semi
empirical” estimates of H since the estimates include 1 of 2 potentially measured values. 
Standard deviations (log 10) from model test sets for P and SW are about 1 corresponding 
to Cfs of about 90 (i.e. using Equation 4 in the main text). The “bond method” in 
HENRYWIN has slightly better test statistics and has been shown to outperform the 
“group method” in an independent evaluation (Altschuh et al. 1999). Therefore, we used 
the “bond method” predictions for the remaining 10,207 chemicals unless the model was 
not able to make a prediction in which case we calculated H from predicted P and SW. 
The log 10 standard deviation of the “bond method” QSAR against the testing set 
(n=1,376) is 0.475 corresponding to a Cf of about 8.5 (i.e. using Equation 4 in the main 
text). The H and P models are shown to have decreased performance when H is low and 
P is low, respectively. For example, errors in QSA(P)R predictions are notably greater 
when KAW < 10-5. To address this, we selected and assigned two sets of Cfs to QSA(P)R 
and “semi-empirical” estimates of H when the values fall within the defined domain as 

-5 -5 -12  follows: if KAW < 103 or  10  then Cf = 30, if KAW < 10  or > 10 then Cf = 100. For 
the 2,852 chemicals with model and “semi-empirical” estimated values that fall outside 
of the defined model domain for H (about 23% of the case study dataset), we replaced the 
predicted values with the minimum or maximum domain values accordingly and assigned 
Cfs of 300 to these estimated property values.  

2.2 Degradation half-lives 

This section describes methods for estimating degradation half-lives (HL; h) and 
Cfs. There are few measured data available and there are recognized challenges 
estimating biodegradation HLs for multimedia models, e.g. (Arnot et al. 2005; Aronson et 
al. 2006; Fenner et al. 2006; Howard 1985); therefore, selecting median values and 
characterizing uncertainty for degradation HLs for most environmental media requires 
more assumptions and professional judgment than required for partitioning properties.  

Air. Primary transformation reactions between hydroxyl (OH) radicals and 
organic chemicals and between ozone (O3) and olefinic/acetylenic compounds have been 
measured in the gas phase. We obtained measured and predicted gas phase rate constants 
for these reactions from the AOPWIN database and model in EPI Suite Ver. 4.1 (U.S. 
EPA 2011). For the 12,619 unique SMILES in the present study, there are 465 and 140 
measured laboratory data for hydroxyl radical and ozone reactions, respectively. 

The predictive models in AOPWIN are “based upon Structure-Activity 
Relationship methods” (U.S. EPA 2011) by Atkinson and colleagues, e.g. (Atkinson and 
Carter 1984; Atkinson 1985; Atkinson et al. 2008). For the 12,619 unique SMILES in the 
present case study dataset, AOPWIN gas phase predictions for OH radical and O3 

reactions were possible for 12,536 and 2,514, respectively. The AOPWIN model 
development and test sets are not clearly stated; however, the log 10 standard deviations 
for the QSARs for OH reactions are on the order of 0.21 to 0.24 and about 0.42 to 0.52 
for O3 (Meylan and Howard 1993). These uncertainty estimates correspond to Cfs of 
about 3 and 10, respectively (Slob 1994). 
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Chemical degradation in the atmosphere is a function of the reaction constant and 
the oxidant concentration. Assuming a constant oxidant concentration, a pseudo first-
order reaction half-life can be calculated, i.e., HL=ln(2)/k[oxidant]; however, OH and O3 

concentrations in the lower troposphere are also uncertain, thus contributing uncertainty 
to the required model input parameter. We assumed median OH and O3 concentrations of 
2×106 molecules (radicals)/cm3 per 12 hours of daylight and 7×1011 molecules/cm3 per 
day, respectively, and based on the range of typical annual oxidant concentration 
estimates in sub-tropical and temperate latitudes of the northern hemisphere (~ 15 to 60 
N) and different altitudes (regional environment has a height of 1 km) (Atkinson and 
Arey 2003; Bahm and Khalil 2004), we assigned Cfs of 10 and 30 to the OH and O3 half-
lives, respectively. Although we selected measured data preferentially over modelled rate 
constant estimates, there was no distinction made for the assignment of Cfs. For 
substances subject to both reactive processes (i.e. n~2,578), we added the half-lives as 
reciprocals to obtain an overall primary degradation HL in air. If the overall reaction HL 
was dominated by the O3 process (i.e. 35% of the 2,580 substances), we applied a Cf of 
30 otherwise we applied a Cf of 10. For substances that had a total reaction rate of zero or 
for which a HL could not be determined, we assumed a HL of 55,000 d (Mackay et al. 
2006) and we applied a Cf of 100. 

For this case study we did not consider reactions with nitrate radicals (and other 
possible oxidizing agents in the atmosphere) because of a lack of available QSARs for 
large scale screening assessments. Also, there is some uncertainty as to whether or not 
reactions in the atmosphere occur strictly in the gas phase or if the same rates of reaction 
occur for chemicals adsorbed or absorbed in or on aerosol. For these screening-level 
simulations we assumed that reactions only occur in the gas phase. 

 Water. Empirical data for environmental biodegradation HL data are only 
available for relatively few chemicals (i.e. some biocides and polycyclic aromatic 
hydrocarbons) and therefore we did not consider these data in this case study. The only 
free, publicly available screening model that provides environmental biodegradation HL 
information is the BioHCwin model in EPI Suite Ver. 4.1 (U.S. EPA 2011). The 
BIOWIN sub-models include significant inherent information on the relative 
biodegradability of chemicals derived from different sources including measured field 
and laboratory data and expert survey knowledge; however, these models do not provide 
direct HL information for multimedia modeling. To address the need for environmental 
HLs, BIOWIN calibration methods have been suggested (Arnot et al. 2005; Aronson et 
al. 2006; Fenner et al. 2006). 

We used a BIOWIN calibration method described elsewhere (Arnot et al. 2005) to 
obtain estimates of “environmentally relevant half-lives”. Briefly, the raw numerical 
output of the BIOWIN sub-models: (i) the Ultimate Survey Model (USM), (ii) the 
Primary Survey Model (PSM), (iii) the BIODEG Linear Model (BIODEG), and (iv) the 
MITI Linear Model (MITI) were regressed against a dataset of environmental aerobic 
biodegradation HLs (Arnot et al. 2005). The environmental HL data used in the QSAR 
calibrations and model evaluations for chemicals with more than three environmental 
half-life measurements have Cfs that span from 2 to 90 with a median value of 9 (Arnot 
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et al. 2005). Comparing the average of these four predictions to a dataset of 118 
substances with environmental half-life estimates (ranging from 1.3 to 2900 days) shows 
that approximately 95% of the predicted values are within 0.92 log units of the selected 
estimates (Arnot et al. 2005). This uncertainty of the averaged model predictions to this 
dataset of environmental half-lives corresponds to a Cf of 8. Therefore, we assumed a “de 
minimus” Cf of 10 for the biodegradation HLs for our case study simulations. We 
calculated a Cf for the biodegradation HL estimates from the log 10 standard deviation 
from the four different BIOWIN model predictions for each chemical and added it to the 
de minimus value of 10. Cfs based on differences in model predictions for the list of 
12,619 substances ranged from 1.1 to 3200 with a median value of 3.5. The 99.5 
percentile is 160 and 24 substances had Cfs that were greater than 300. 

For hydrocarbons, we used the BioHCwin model to obtain median biodegradation 
HL estimates for 468 of the 12,619 unique structures. The log 10 standard deviation from 
the BioHCwin test set (n=54) is 0.34 corresponding to a Cf of 5. The BioHCwin model 
predicts extremely long, and seemingly unrealistic half-lives for certain chemicals, e.g., a 
terpene predicted half-life is 2×1010 d. A maximum degradation half-life of 3650 d was 
assumed for all substances with predicted values that were greater than 3650 d because 
the model results are relatively insensitive to values greater than 10 years. Following the 
same general approach for “non-hydrocarbons” outlined above, we calculated the Cfs 
using the four BIOWIN models and added these Cfs to the BioHCwin model baseline “de 
minimus” Cf of 5. 

Biodegradation reactions were assumed to occur in the bulk water compartment, 
i.e. dissolved and particle bound. We did not consider degradation reactions resulting 
from hydrolysis and photolysis in the case study simulations. 

Soil. We assumed an extrapolation factor of 1:2 for converting the aerobic water 
biodegradation half-lives to soil values, based on (Aronson et al. 2006). The Cfs for water 
were doubled for the soil compartment. 

Sediment. We assumed an extrapolation factor of 1:9 for converting the aerobic 
water biodegradation half-lives to sediment values, based on (Aronson et al. 2006). The 
Cfs for water were increased by a factor of 3 for the sediment compartment. 

Biota. The screening-level primary metabolic biotransformation half-life input 
requirements are grouped into two general organism classes; “fish” and 
“avian/mammals”. The chemical-specific biotransformation half-life inputs (HLN) in 
RAIDAR require values normalized to 1 kg organism (MN). The normalized half-lives are 
then scaled in the RAIDAR model to biotransformation half-lives for the different 
representative species (HLi) in the model that have different masses (Mi; kg) as: 

 (M / M )0.25 HLi = HLN i N (S1) 

In vivo estimates for fish primary biotransformation HLs are available for 299 of the 
12,619 unique structures (Arnot et al. 2008; U.S. EPA 2011). We used the BCFBAF 
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model in EPI Suite Ver. 4.1 (U.S. EPA 2011) to estimate whole body primary 
biotransformation half-lives for the remaining substances. We used recommended 
screening-level minimum whole body primary biotransformation half-lives to replace 
model predicted values that are shorter than the recommended values as detailed 
elsewhere (Arnot et al. 2009). The log 10 standard deviation of the biotransformation HL 
against the measured training set (n=421 substances) is 0.49 corresponding to a Cf of 
about 9. We assigned chemicals with in vivo estimates a screening-level Cf of 10. Half-
life predictions compared against external test data (n=211 substances) show a log 
standard deviation of 0.60 for the estimation error, which suggests a Cf of 15 for in silico 
estimates. It is noted that errors in KOW predictions by KOWWIN are automatically 
propagated into errors for biotransformation half-life since KOW is an input parameter in 
the BCFBAF biotransformation HL model (Arnot et al. 2009). 

To our knowledge there are no publicly available QSA(P)Rs for obtaining 
screening-level estimates of primary biotransformation HLs in birds and mammals. In 
this case study, we assumed the screening-level biotransformation HLs for birds and 
mammals to be equal to the biotransformation HLs for fish (i.e. another vertebrate 
species) on a per-body weight basis. We multiplied the Cf for fish by 3 as an assumed 
inter-species uncertainty scaling factor to obtain Cfs for HLBIO for birds and mammals. 

2.3 Emissions estimates 

Actual emission rate data are basically non-existent for the vast majority of 
chemicals requiring evaluation (Egeghy et al. 2012). Our objective was to obtain some 
preliminary estimates of production, use and emissions for intentionally produced 
commercial chemicals. We obtained quantity (Q) estimates following the approach and 
data outlined earlier (Brown and Wania 2008). Briefly, we obtained production data from 
five national and international production volume lists including: (i) the Canadian 
Domestic Substances List (Environment Canada 2006), (ii) the U.S. EPA’s High 
Production Volume (HPV) Challenge Program Inventory Update Rule (U.S. EPA 2006), 
(iii) the Japanese HPV list (METI 2008), (iv) the European Chemical Substances 
Information System (ESIS) (ESIS), and (v) the OECD’s list of HPV chemicals (OECD 
2004). It must be recognized that there may be overlaps in the data and that some sources 
of information such as the Canadian DSL (ca. 1985) are severely outdated. Another 
major complicating factor is that the production data are typically presented as bins, 
rather than discrete numerical values, e.g., “100,000 to 1,000,000 t/y”. In addition, the 
top-level bins are typically open-ended, and a large maximum production value had to be 
assumed (10,000,000 t/y or 10 times greater than the largest upper bin reported, from the 
Japanese HPV list). We summed minimum and maximum overall production volumes for 
substances that had the same “stripped” SMILES notation and we calculated the total 
geometric mean production quantity (MQ_T) from the total minimum (MINQ_T) and 
maximum (MAXQ_T) values. 

Presumably the maximum emission rate can only approximate the maximum total 
production rate for chemicals that are intentionally released to the environment (e.g. 
certain biocides). On the other hand, the minimal emission rate can be negligible for 
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chemicals that are consumed entirely during production. Moving from highly uncertain 
production quantities to estimates of actual emission rates is challenging; however, 
screening-level methods have been developed. Most notably, the EU Technical Guidance 
Document (TGD) on Risk Assessment provides recommendations for emission scenarios 
that were initially developed to obtain “realistic worst-case emission scenarios” 
(European Commission 2003). Following the EU TGD, we estimated emissions from 
quantity estimates and physical-chemical property information. As outlined in Table S-1, 
physical-chemical properties alone are assumed to provide information on the relative 
release of chemical to air, water and soil. The specific emission factors listed in Table S-1 
furthermore represent “default” recommended values whenever information on chemical 
function is lacking, lumped across three stages of the commercial life-cycle of a chemical 
(production, formulation and use). The use of physical-chemical properties to estimate 
the actual emission rate is quite limited (Fauser et al. 2010); however, chemical function 
information is not currently available for the vast majority of the chemicals. 

The regional scale estimate for the actual chemical emission rate (EA; kt/y) is 
required by the model for actual exposure estimates. The regional scale of the evaluative 
environment is 105 km2 and the production data are from various countries and 
international organizations. We assumed a general population density of 50 persons/ km2 

and a population of 2.5 billion people associated with the use and release of these 
chemicals, and we applied a factor of 500 to obtain a regional median quantity (MQ_R) 
from MQ_T (i.e. a global-scale quantity). The scaling factor of 500 is a crude 
approximation; however, since this research is largely focused on identifying sources of 
uncertainty in screening-level exposure assessment and these data are not being used for 
actual risk assessment the scaling factor is somewhat arbitrary. The EU TGD emissions 
scenarios are applied to MQ_R to obtain EA and mode-of-entry (MOE) information. 

According to the EU TGD “worst case emission scenarios” the percentages for 
actual chemical emissions from Q estimates range from 4.1 to 83.5% (see Table S-1). 
However, as discussed above the percentages for certain chemicals may fall outside this 
range. While there are undoubtedly uncertainties in the % MOE, the EU TGD emission 
scenarios provide some screening-level guidance for % MOE; however, they are 
considered too conservative in the context of the plausible range of actual emission rates. 
We estimated screening-level Cfs as 0.1MAXQ_T / MQ_R. This is also a conservative 
screening-level assumption suggesting that the maximum chemical quantity that can be 
released in a regional scale environment (105 km2) is 10% of the MQ_T, e.g., representing 
a production facility associated with high emissions of a particular chemical to the 
regional environment in addition to per capita usage. The current approach does not 
likely adequately address the true uncertainty in the distribution for emissions, i.e. the 
true lower bound estimate is not likely captured for certain substances such as chemical 
production intermediates. Thus for many substances the current approach is likely very 
conservative. Characterizing the uncertainty in the actual emissions rate here is also very 
preliminary, but a necessary first step to obtain some context of the relative data gaps and 
uncertainties in high throughput exposure and risk assessment. 
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Supplementary Material Table 1. European Union Technical Guidance (TGD) emissions 
factors (European Commission 2003) used in the case study to estimate chemical mode 
of entry and the fraction of quantity that is actually released to the environment. 

Fraction released to air 

Vap\Sol < 100 mg/L 100-1000 >=1000 

< 1 Pa 0.004 0.003 0.003 

1-10 0.004 0.003 0.003 

10-100 0.016 0.007 0.006 

100-1000 0.120 0.070 0.021 

1000-10000 0.575 0.175 0.085 

>10000 0.825 0.575 0.175 

Fraction released to wastewater 

Vap\Sol < 100 mg/L 100-1000 >=1000 

<1 Pa 0.11 0.51 0.76 

1-10 0.11 0.51 0.76 


10-100 0.02 0.11 0.51 


100-1000 0.01 0.02 0.11 


1000-10000 0.01 0.01 0.02 


>10000 0.01 0.01 0.01 

Fraction released to soil 

Vap\Sol <100 mg/L 100-1000 >=1000 

< 1 Pa 0.0092 0.0027 0.0004 

1-10 0.0092 0.0027 0.0004 

10-100 0.0051 0.0011 0.0004 

100-1000 0.0011 0.0007 0.0002 

1000-10000 0.0004 0.0002 0.0002 

>10000 0.0002 0.0002 0.0002 

Fraction released to the environment (all media) 

Vap\Sol < 100 mg/L 100-1000 >=1000 

<1 Pa 0.12 0.51 0.76 

1-10 0.12 0.51 0.76 

10-100 0.04 0.11 0.51 

100-1000 0.13 0.09 0.13 

1000-10000 0.58 0.18 0.10 

>10000 0.83 0.58 0.18 
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